
Red Hat Developers helps you assess the tools available to
solve the problem at hand, guides you through the process
to get the job done and lets you use new technology trends
so you can do your job better and faster.

Moving towards
Microservices?

Don’t forget DevOps.

Join now at
developers.redhat.com

http://developers.redhat.com
http://developers.redhat.com
http://developers.redhat.com
http://redhat.com

Getting Started with
Microservices

By Arun Gupta

 » What Are Microservices?

 » Key Characteristics of
Microservices

 » Benefits of Microservices

 » Operational Requirements for
Microservices

 » Good Design Principles for
Existing Monoliths... and more!

INTRODUCTION

The term “microservices” describes a new software development

pattern that has grown from recent trends in software

development/management practices meant to increase the

speed and efficiency of developing and managing software

solutions. Agile methods, DevOps culture, PaaS, application

containers, and the widespread adoption (both culturally and

technically) of CI/CD methods across the marketplace are

making it possible to consider building truly modular large-

scale service systems for both internal and commercial use.

WH AT A RE M ICROSERVICES?

Microservices involve an architectural approach that emphasizes
the decomposition of applications into single-purpose, loosely
coupled services managed by cross-functional teams, for delivering
and maintaining complex software systems with the velocity and
quality required by today’s digital business.

Microservices are language-, platform-, and operating system-
agnostic. They break down a big monolithic application,
typically packaged as a single archive, into smaller and simpler
applications. Each application does one thing, and does it
well, so the “micro” in microservices refers to the scope of the
services’ functionalities, as opposed to the number of Lines of
Code (LOC).

Each application is built by a full-stack team, which reduces
potential communication mismatch between different teams
that could exist otherwise. Microservices may not be suitable
for simpler applications and are better suited for complex
applications that have grown over a period of time.

The availability of an application on a mobile device; the
frequency with which an application needs to be updated; and
the responsiveness of an application’s design are a few key
factors driving this style of architecture.

The concept behind microservices is similar to Service-oriented
Architecture (SOA), which is why this style of architecture has
been referred to as “SOA with DevOps,” “SOA for hipsters,”
and “SOA 2.0”.

KEY CHAR ACTERISTICS OF MICROSERVICES

1. Domain-Driven Design: Functional decomposition can be
easily achieved using Eric Evans’s DDD approach.

2. Single Responsibility Principle: Each service is responsible
for a single part of the functionality, and does it well.

3. Explicitly Published Interface: A producer service
publishes an interface that is used by a consumer service.

4. Independent DURS (Deploy, Update, Replace, Scale):
Each service can be independently deployed, updated,
replaced, and scaled.

5. Lightweight communication: REST over HTTP, STOMP
over WebSocket, and other similar lightweight protocols
are used for communication between services.

BENEFITS OF M ICROSERVICES
1. Independent scaling: Each microservice can scale

independently via X-axis scaling (cloning with more
CPU or memory) and Z-axis scaling (sharding), based
upon their needs. This is very different from monolithic
applications, which may have very different requirements
that must be deployed together.

2. Independent upgrades: Each service can be deployed
independent of other services. Any change local to a
service can be easily made by a developer without requiring
coordination with other teams. For example, performance
of a service can be improved by changing the underlying
implementation. As a result this maintains the agility of
the microservice. This is also a great enabler of CI/CD.

3. Easy maintenance: Code in a microservice is restricted
to one function and is thus easier to understand. IDEs
can load the smaller amounts of code more easily, and
increased readability can keep developers more productive.

4. Potential heterogeneity and polyglotism: Developers are
free to pick the language and stack that are best suited

215

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 D
Zo

ne
.c

om
/r

ef
ca

rd
z

G
E

T
T

IN
G

 S
T

A
R

T
E

D
 W

IT
H

 M
IC

R
O

S
E

R
V

IC
E

S

© DZONE, INC. | DZONE.COM

BROUGHT TO YOU BY:

Red Hat Developers gives you access
to products, experts, and new ideas.

Share more.
Learn more.
Code more.

Get involved at developers.redhat.com

http://dzone.com/refcardz
http://dzone.com/refcardz
http://dzone.com
http://redhat.com
http://developers.redhat.com

for their service. This enables one to rewrite the service
using better languages and technologies as opposed to being
penalized because of past decisions, and gives freedom of
choice when picking a technology, tool, or framework.

5. Fault and resource isolation: A misbehaving service, such
as a memory leak or an unclosed database connection, will
only affect that service, as opposed to an entire monolithic
application. This improves fault isolation and limits how
much of an application a failure can affect.

6. Improved communication across teams: A microservice is
typically built by a full-stack team. All members related to a
domain work together in a single team, which significantly
improves communication between team members, as they
share the same end goal.

OPER ATION A L REQUIREM ENTS FOR
M ICROSERVICES

Microservices are not the silver bullet that will solve all
architectural problems in your applications. Implementing
microservices may help, but that is often just the byproduct of
refactoring your application and typically rewriting code using
guidelines required by this architecture style. True success requires
significant investment.

1. Service Replication: Each service needs to replicate, typically
using X-axis cloning or Y-axis partitioning. There should be a
standard mechanism by which services can easily scale based
upon metadata. A PaaS, such as OpenShift by Red Hat, can
simplify this functionality.

2. Service Discovery: In a microservice world, multiple services
are typically distributed in a PaaS environment. Immutable
infrastructure is provided by containers or immutable VM
images. Services may scale up and down based upon certain
pre-defined metrics. The exact address of a service may not
be known until the service is deployed and ready to be used.

The dynamic nature of a service’s endpoint address is

handled by service registration and discovery. Each service

registers with a broker and provides more details about itself

(including the endpoint address). Other consumer services

then query the broker to find out the location of a service

and invoke it. There are several ways to register and query

services such as ZooKeeper, etcd, consul, Kubernetes, Netflix

Eureka, and others.

3. Service Monitoring: One of the most important aspects
of a distributed system is service monitoring and logging.
This enables one to take proactive action if, for example,
a service is consuming unexpected resources. The ELK
Stack can aggregate logs from different microservices,
provide a consistent visualization over them, and make that
data available to business users. Other possible tools for
distributed logging are Syslog, Logentries, and Loggly.

4. Resiliency: Software failure will occur, no matter how much
and how hard you test. This is all the more important when
multiple microservices are distributed all over the Internet.
The key concern is not “how to avoid failure” but “how to

deal with failure.” It’s important for services to automatically
take corrective action to ensure user experience is not
impacted. The Circuit Breaker pattern allows one to build
resiliency in software—Netflix’s Hystrix and Ribbon are good
libraries that implement this pattern.

5. DevOps: Continuous Integration and Continuous
Deployment (CI/CD) are very important in order for
microservices-based applications to succeed. These practices
are required so that errors are identified early, and so little to
no coordination is required between different teams building
different microservices.

GOOD DESIGN PRINCIPLES FOR
E X ISTING MONOLITHS

Refactoring a monolith into a microservices-based application will
not help solve all architectural issues. Before you start breaking up
a monolith, it’s important to make sure the monolith is designed
following good software architecture principles. Some common
rules are:

1. Practice separation of concerns, possibly using Model-View-
Controller (MVC)

2. Use well-defined APIs for high cohesion and low coupling

3. Don’t Repeat Yourself (DRY)

4. Use Convention over Configuration (CoC)

5. Separate interfaces/APIs and implementations, and follow
the Law of Demeter. Classes shouldn’t call other classes
directly just because they happen to be in the same archive

6. Use Domain-Driven Design to keep objects related to a
domain/component together

7. Don’t build something that you don’t need now (YAGNI—You
Aren’t Going to Need It)

REFACTORING A MONOLITH TO
M ICROSERVICES

Consider a Java EE monolithic application that is typically
defined as a WAR or an EAR archive. The entire functionality
for the application is packaged in a single unit. For example, an
online shopping cart may consist of User, Catalog, and Order
functionalities. All web pages are in the root of the application, all
corresponding Java classes are in the WEB-INF/classes directory,
and all resources are in the WEB-INF/classes/META-INF directory.

Figure 1: Monolith Architecture

Such an application can be refactored into microservices, which

would create an architecture that would look like the following:

2

© DZONE, INC. | DZONE.COM

MICROSERVICES

http://dzone.com/refcardz
http://dzone.com

Figure 2: Refactoring to Microservices

1. The above application is functionally decomposed where User,
Order, and Catalog components are packaged as separate WAR
files. Each WAR file has the relevant web pages, classes, and
configuration files required for that component.

2. Java EE is used to implement each component, but there is no
long term commitment to the stack, as different components
talk to each other using a well-defined API.

3. Different classes in this component belong to the same
domain, so the code is easier to write and maintain. The
underlying stack can also change, possibly keeping technical
debt to a minimum.

4. Each archive has its own database (i.e. data stores are not
shared). This allows each microservice to evolve and choose
whatever type of data store—relational, NoSQL, flat file, in-
memory, or some thing else—is most appropriate.

5. Each component registers with a Service Registry. This is
required because multiple stateless instances of each service
might be running at a given time, and their exact endpoint
locations will be known only at the runtime. Netflix Eureka,
etcd, and Zookeeper are some options for service registry/
discovery.

6. If components need to talk to each other, which is quite
common, then they would do so using a pre-defined API. REST
for synchronous or Pub/Sub for asynchronous communication
are the most common means to achieve this. In this case, the
Order component discovers User and Catalog service and talks
to them using a REST API.

7. Client interaction for the application is defined in another
application (in this case, the Shopping Cart UI). This application
discovers the services from the Service Registry and composes
them together. It should mostly be a dumb proxy (discussed
in a later section), where the UI pages of the different
components are invoked to display the interface. A common
look and feel can be achieved by providing standard CSS/
JavaScript resources.

More details can be found at: http://github.com/arun-gupta/
microservices.

M ICROSERVICES DESIGN PAT TERN

Multiple microservices can be composed with each other to
provide composite microservices. Some common design patterns
are explained below.

AGGREGATOR
Results from multiple microservices are aggregated into one
composite microservice.

In its simplest form, an Aggregator would be a simple web page
that invokes multiple services to achieve the functionality
required by the application. Since each service (Service A, Service
B, and Service C) is exposed using a lightweight REST mechanism,
the web page can retrieve the data and process/display it
accordingly. If processing is required—for example, if you need
to apply business logic to the data received from individual
services—then you will likely need a bean to transform the data
before being displayed by the Aggregator web page.

Figure 3: Aggregator Pattern

An Aggregator can also act simply as a higher-level composite
microservice which can be consumed by other services. In this
case, the Aggregator would collect the data from each individual
microservice, apply business logic to it, and publish it as a REST
endpoint.

This design pattern follows the DRY principle—if there are
multiple services that need to access Service A, B, and C, then
you should abstract that logic into a composite microservice and
aggregate that logic into one service. An advantage of abstracting
at this level is that the individual services (i.e. Service A, B, and C)
can evolve independently, and the needs of the business logic are
still provided by the composite microservice.

PROXY
The Proxy microservice design pattern is a variation of the
Aggregator. In this case, aggregation does not need to happen
client-side. Rather, a different microservice may be invoked as
required by the business logic.

Just like in the Aggregator pattern, a Proxy can scale independently
on the X-axis and Z-axis. You may want to do this in cases
where each individual service does not need to be exposed to the
consumer and should instead go through an interface.

3

© DZONE, INC. | DZONE.COM

MICROSERVICES

http://github.com/arun-gupta/microservices
http://github.com/arun-gupta/microservices
http://dzone.com
http://dzone.com/refcardz

Figure 4: Proxy Pattern

A Proxy can be classified in one of two ways. A dumb proxy just

delegates any request to one of the services. Alternatively, a smart
proxy applies some data transformation before the response is
served to the client. A good example of this would be where the
presentation layer to different devices can be encapsulated in the
smart proxy.

CHAINED
The Chained microservice design pattern produces a single
consolidated response to a request. In this case, the request from
the client is received by Service A, which then communicates
with Service B, which in turn may communicate with Service C.
All of these services are likely using a synchronous HTTP request/
response messaging.

Figure 5: Chained Pattern

One important thing to understand here is that the client is blocked
until the complete chain of request/response (i.e. Service A ↔
Service B and Service B ↔ Service C), is completed. The request
from Service B to Service C may look completely different from
the request from Service A to Service B. Similarly, response from
Service B to Service A may look completely different from Service
C to Service B. And that’s the whole point; different services are
adding their own value.

This means it’s important to remember not to make the chain too
long because the synchronous nature of the chain will appear like
a long wait at the client side—especially if it’s a web page that is
waiting for the response to be shown. There are workarounds to
the blocking caused by this request/response, which are discussed
in a subsequent design pattern.

Note: A chain with a single microservice is called singleton chain.

BRANCH
The Branch microservice design pattern extends the Aggregator
design pattern and allows simultaneous response processing
from two (likely mutually exclusive) chains of microservices. This
pattern can also be used to call different chains, or a single chain,
based upon the business logic needs.

Figure 6: Branch Pattern

Service A—either a web page or a composite microservice—
may invoke two different chains concurrently, resembling the
Aggregator design pattern. Alternatively, Service A may invoke
only one chain, based on the request received from the client.

SHARED RESOURCES
One of the design principles behind microservices is autonomy.
This means the service is full-stack and has control of all the
components—UI, middleware, persistence, transactions. This
allows the service to be polyglot, so the right tool can be used for
the right job. For example, if your application uses some data that
fits naturally in a graph store, while other data fits naturally in a
relational database, you can use the appropriate storage model
for each domain, rather than jamming everything into a SQL or
NoSQL database.

However, a typical problem (especially when refactoring from
an existing monolithic application) is database normalization:
ensuring that each microservice has the right amount of data—
nothing less and nothing more. Even if only a SQL database is
used in a monolithic application, denormalizing the database
would lead to duplication of data, and possibly inconsistency. In
a transition phase, some applications may benefit from a shared
data microservice design pattern.

Figure 7: Shared Resources Pattern

4

© DZONE, INC. | DZONE.COM

MICROSERVICES

http://dzone.com
http://dzone.com/refcardz

© DZONE, INC. | DZONE.COM

Some microservices, likely in a chain, may share caching and
database stores. This only makes sense if there is a strong
coupling between the two services. Some people might consider
this an anti-pattern, but business logic needs might require it in
some cases. This would certainly be an anti-pattern for greenfield
applications implementing a microservices design pattern.

ASYNC MESSAGING
While the REST design pattern is quite prevalent, and well
understood, it has the limitation of being synchronous, and thus
blocking. Asynchrony can be achieved, but must be done in an
application-specific way. Because of this, some microservice
architectures may elect to use message queues instead of REST
request/response.

Figure 8: Async Messaging Pattern

In the preceding design pattern, Service A may call Service C
synchronously, while Service C is communicating with Service B

and D asynchronously using a shared message queue. Service A →
Service C communication could also be asynchronous, possibly using
WebSocket, to achieve the desired scalability.

A combination of REST request/response and pub/sub messaging
may be used to accomplish the business logic need.

CONCLUSION

Microservices model has well-known advantages and can certainly
help your business evolve faster. But monoliths have served us
well so far, and will continue to work for years to come. Consider
the operational requirements of microservices in addition to the
benefits before considering refactoring your monolith to a
microservices architecture. Many times, better software engineering
and architecture will be enough. But if you decide to follow the
microservice route, then the advice in this Refcard should help to
get you started.

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

5

CREDITS:
Editor: G. Ryan Spain | Designer: Yassee Mohebbi | Production: Chris Smith | Sponsor Relations: Chris Brumfield | Marketing: Chelsea Bosworth

MICROSERVICES

ABOUT THE AUTHOR
Arun Gupta is Director of Developer Advocacy at
Red Hat, focusing on Red Hat JBoss Middleware.
As a founding member of the Java EE team at Sun
Microsystems, he spread the love for technology all
around the world. At Oracle, he led a cross-functional
team to drive the global launch of the Java EE 7
platform, including strategic planning and execution,

content development, and the execution of marketing campaigns and
programs. After authoring ~1,400 blogs at blogs.oracle.com/arungupta
on different Java technologies, he continues to promote Red Hat
technologies and products at blog.arungupta.me.

mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://dzone.com
http://dzone.com
http://dzone.com/refcardz
http://blogs.oracle.com/arungupta
http://blog.arungupta.me

